Mini\X/OPCJ

ToolKit Manual







DISCLAIMER

The information contained in this document is subject to change without notice.

Minisoft, Inc. makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
Minisoft, Inc. or its agents shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishings, performance, or use of this ma-
terial.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
another programming language without the prior written consent of Minisoft, Inc.

©1990 by Minisoft, Inc. Printed in U.S.A.

All product names and services identified in this document are trademarks or registered
trademarks of their respective companies and are used throughout this document in edito-
rial fashion only and are not intended to convey an endorsement or other affiliation with
Minisoft, Inc.



LICENSE AGREEMENT

In return for payment of a onetime fee for this software product, the Customer receives
from Minisoft, Inc. a license to use the product subject to the following terms and condi-
tions:

¢ The product may be used on one computer system at a time: i.e., its use is not limited to
a particular machine or user but to one machine at a time.

+ The software may be copied for archive purposes, program error verification, or to
replace defective media. All copies must bear copyright notices contained in the origi-
nal copy.

+ The software may not be installed on a network server for access by more than one
personal computer without written permission from Minisoft, Inc.

Purchase of this license does not transfer any right, title, or interest in the software product
to the Customer except as specifically set forth in the License Agreement, and Customer is
on notice that the software product is protected under the copyright laws.

90-Day Limited Warranty

Minisoft, Inc. warrants that this product will execute its %r,OErammmg instructions when properly
installed on a 1rj)roperly configured personal computer for which it is intended. Minisoft, Inc. does not
warrant that the operation of the software will be uninterrupted or error free. In the event that this
software product fails to execute its programming instructions, Customer’s exclusive remedy shall be
to return the product to Minisoft, Inc.”to obtain replacement. Should Minisoft, Inc. be unable to
replace the product within a reasonable amount of time, Customer shall be entitled to a refund of the
purchase price upon the return of the product and all copies. Minisoft, Inc. warrants the medium upon
which this product is recorded to be free from defects in materials and workmanship under normal use
for a period. of 90 days from the date of purchase. During the warranty period Minisoft, Inc. will
replace media which grove to be defective. Customer’s exclusive remedy for any media which proves
to be defective shall be to return the media to Minisoft, Inc. for replacement.

ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE 90-
DAY DURATION OF THIS WRITTEN WARRANTY. Some states or provinces do not allow limi-
tations on how long an implied warranty lasts, so the above limitation or exclusion may not app}y to
you. This warranty gives you specific rights, and you may also have other rights which vary from
State to state or province to province.

LIMITATION OF WARRANTY: Minisoft, Inc. makes no other warranty expressed or implied with
respect to this product. Minisoft, inc. specifically disclaims the implied warranty of merchantability
and fitness for a particular purpose.



TABLE OF CONTENTS

DISCLATMET ..ottt ettt 3
LICENSE AQIEOMENL ...ecuvveeuvieiieeiiieeiieetieeiteeteeeiteeteeseaeebeeseeeenseesseeeseesneeans 4
MINISOTt TOOLKIE.....eiiiiieiieiieeiieieee e 7
TOOIKIt LIDTATIES ...eouveieiiiiiieiieiieieee e 21

FILES ettt ettt 21

FUNCHIONS vttt ettt 22
Create a Document - expanded table ...........cccceveiieiiiiiiiiniiiiieieieee 41
Edit a Document - expanded table............cccceeviieniiiiieiiiiieeee 42
Display a Document - expanded table ...........ccccevviieiieriiinieniieieeeee, 43
Copy a Document - expanded table...........ccoocveeeciiieiciieeiieecee e 44
Convert a Document to an ASCII File - expanded table ......................... 46
Convert an ASCII File to Document - expanded table..............ccuenneee. 48
Interactive Document Printing - expanded table ............cccceevveeenneennnee. 50
Background Document Printing - expanded table............ccccceeveeennennnee. 53
Interactive List Processing - expanded table ............ccccceevvvveeiieeeciveennnee. 56
Background List Processing - expanded table............ccccoeevvievierenieeenneen. 59
Integrate Data and Text into a Document - expanded table .................... 62
Concatenate Two Documents - expanded table ............ccceeeeveeeiiiennnnennn. 64

Delete a Document - expanded table ...........cccceeeeiieeiiieeciieeieeeee e, 66



Set New File or Document Parameters - expanded table ........................ 67
Set List File or List Document - expanded table ..............ccccceevienirennnnns 72
Set Data Variable - expanded table ..........ccccceeviiiiiiniiiiniiiiieieeeee 74
Set Text Variable - expanded table.............coccoeviieiieniiieniiiiieiecieee 75
Set Editor Parameters - expanded table ............cccoovieeiiieniiiiiienieiiies 76

Exit - expanded table ..........ccooieriiiiiiiii e 79



MINISOFT TOOLKIT

The Minisoft ToolKit is a programmatic interface which allows application and system
programmers to incorporate a comprehensive set of word processing features directly into
their application programs. Since the ToolKit consists of a group of related programs, you
will not need to recompile your software each time you receive a ToolKit upgrade. ToolKit’s
modular form should also help insure that future releases will be backwards compatible.
The ToolKit offers the following features:

+ creating documents

+ editing documents

+ displaying documents

+ copying documents to MiniWord

+ copying documents from MiniWord

+ converting documents to ASCII files

+ converting ASCII files to documents

+ interactive document printing

+ background document printing

+ interactive list processing

+ background list processing

+ integrating data and text into documents

+ setting new file and document parameters

+ document assembly

The Minisoft ToolKit is a group of programs that other application programs call to per-
form word processing and document management tasks. It also allows you to convert
documents to and from ASCII files (better known as EDITOR files on the HP €3000). The
ToolKit gives you access to two different types of documents: standalone documents and

documents owned by MiniWord. A standalone document resides on your system with the
file name you supply as an output file name parameter. Documents owned by MiniWord



are assigned file names which are generated by the MiniWord system. You can reference
these files through a 24 character document name and a 60 character folder name
(group.account on MPE; the path on HP-UX). Documents owned by MiniWord are known
to the MiniWord system; standalone documents are not. You should use standalone docu-
ments if your application program manages the documents or if you are only going to be
using the document as a temporary file, i.e., created, printed, and deleted. If you need to
access documents from both your application and from MiniWord, then use documents
owned by MiniWord. Both types of documents can be used together to fit the needs of your
application.

The ToolKit communicates with application programs through two IPC files on the HP
€3000, or two named pipes on Unix machines. One file is a command file, the other a result
file. Application programs must send the functions they want the ToolKit to execute via the
command file and retrieve the results from the result file.

Before running the ToolKit, an application must create and open the two communication
files. The communication file names need to have the form TKO##H#### and TKI##H#H##.
The five pound signs, #####, must be replaced with the calling application program’s pro-
cess ID number at the time the application program builds the actual files. The communi-
cation file names must follow this format. The I and the O, in TKI##### and TK O###HH,
refer to Input and Output as seen from the perspective of the calling application program.
Think of TKO##### as the command file and TKI##### as the result file. On the HP e3000
the record size for TKO##### must be 256 bytes and the record size for TKI##### must be
64 bytes.

To give instructions to the ToolKit, the application must write to the command file. The
ToolKit reads the command file, performs the corresponding function, and writes to the
result file letting the application know whether or not the function executed successfully.
The TKO##### and TKI##### files should always be written and read in pairs. The appli-
cation program should write to the command file, TK O#####, then read from the result file,
TKI#####, before proceeding with its next task.

To run the ToolKit, the calling application program must execute the program APPSRVR
followed by the number 17 as a parameter. For example, on a HP 3000 running the MPE
V operating system the application program must use the CREATEPROCESS intrinsic to
run APPSRVR.PUB.MINISOFT with a PARM = 17. On HP e¢3000s running MPE XL the
application program must use the CREATEPROCESS intrinsic to run
APPSRVRN.PUB.MINISOFT with INFO="17". For HP-UX machines, the application



Table 1
General Command File Format

Description Length Offset Values

Function 1 0 79 - sample function
Reserved 7 1

Input file type 1 8 33 - ASCII

Input file interface 1 9 32 - standalone file
Input file name 120 12

Output file type 1 132 32 - document
Output file interface 1 133 32 - standalone file
Output file name 120 136

should use the vfork() and exec() functions to create child processes and then run the pro-
gram APPSRVR 17. The process of running the ToolKit can also be accomplished by
calling the STARTTK function supplied in the ToolKit Library. Refer to the section on the
ToolKit Library for more information about STARTTK.

When application programs send commands to the ToolKit via the file TKO#####, the
ToolKit expects a block of 256 bytes that follows the general format shown below.

Note: For clarity, all values in this document are decimal numbers, base 10. Application
programs should make conversion to base 2, base 8, or base 16, if necessary, when writing
to the command file.

See Table 1.
The actual command file format is much more involved. Complete descriptions of all the

different command formats are near the end of this document. The summarized command
descriptions begin on the next page.



10 |

To send the command “Edit a Standalone Document” to the ToolKit, an application pro-
gram would begin by writing the value 32 to position zero of a 256 byte buffer which
mirrors the format of the command file TKO#####. Position zero of the command file is
the function parameter. The ToolKit determines what function it will perform by reading
this parameter. The input file type parameter at position eight determines the type of file
the ToolKit will edit. In our example the application must write the value 32 in position
eight to edit a document. The input file interface parameter specifies which type of docu-
ment to edit: a standalone document of a document owned by MiniWord. The value for this
parameter must be written at position nine.

In our example this would be 32. Starting with position 12 the application program should
enter the input file name for the standalone document. The path or location should be
included along with the file name. For example, on an HP 3000 the file could be called
INFILE.PUB.MINI. On an HP9000 the same file would be called /usr/minisoft/infile. The
132nd position should contain the output file type, the 3rd position should contain the
output file interface, and the 136th position should contain the output file name along with
its location. In our example the output file type and the output file interface parameters are
ignored, but the output file name parameter should be filled with a string of blank charac-
ters. All unused bytes should be set to zero. Once the application program has placed the
appropriate values in the buffer, it must write the contents of the buffer to the command file
to send it off to the ToolKit. Writing a command to the ToolKit can be accomplished with
the WRITECEF function supplied in the ToolKit Library. Refer to the section on the ToolKit
Library for more information about WRITECF.

Not all the input parameters have to be filled in for every ToolKit function. The table below
lists the TookKit functions and marks the necessary parameters with their decimal values,
or with mnemonic symbols whose meanings are listed below.

Table 2 Legend:
B A string of blank characters.
BTP Blank characters to bring up an interactive screen that prompts for MWD. To

include a centered title up to 64 characters long with your interactive screen,
enter an exclamation point, then a blank space, then the title as your string, i.e..:

“!I' Edit A Document”.
DM Document owned by MiniWord.
DMP Document owned by MiniWord with interactive prompt.
I This field is ignored by the ToolKit.
MWD MiniWord document name, folder and password.
SD Standalone document.

SDF Standalone document file name.




Table2

Function Input file I‘npute file  Inputfile  Output file Qutput file Output file
type interface name type interface name

32: create a document
SD I I B 32/34 32 SDF
DM I I B 32/34 33 MWD
DMP I I B 32/34 33 BTP
32: edit a document
SD 32/34 32 SDF I I B
DM 32/34 33 MWD I I B
DMP 32.34 33 BTP I I B
33: display a document
SD 32 32 SDF I I 1
DM 32 33 MWD I I I
DMP 32 33 BTP I I 1
34: copy a document
SD -> SD 32 32 SDF 32 32 SDF
SD -> DM 32 32 SDF 32 33 MWD
SD -> DMP 32 32 SDF 32 33 BTP
DM -> SD 32 33 MWD 32 32 SDF
DM -> DM 32 33 MWD 32 33 MWD
DM -> DMP 32 33 MWD 32 33 BTP
DMP -> SD 32 33 BTP 32 32 SDF
DMP -> DM 32 33 BTP 32 33 MWD
DMP -> DMP 32 33 BTP 32 33 BTP




12 |

Table 3 Legend:

AFN ASCII file name.

BTP Blank characters to bring up an interactive screen to prompt for
MWD:; to include a centered title up to 64 characters long with your
interactive screen, enter an exclamation point, a blank space, then
the title as your string, i.e. ! Edit a Document”.

DM Document owned by MiniWord.

DMP Document owned by MiniWord with interactive prompt.

MWD MiniWord document name, folder and password.

SD Standalone document.

SDF Standalone document file name.

SPP Supply printing parameters in the function call (the format of the

print parameters is shown in the expanded table.
UPP Use existing document parameters for printing.




Table3
Function Input file ¥nput file Input file  Output file Qutput file Output file
interface name type interface name
35: convert a document to an ASCII file
SD -> ASCII 32 32 SDF 33 32 AFN
DM -> ASCII 32 33 MWD 33 32 AFN
DMP -> ASCII 32 33 BTP 33 32 AFN
35: convert an ASCII file to a document
ASCII -> SD 33 32 AFN 32 32 SDF
ASCII -> DM 33 32 AFN 32 33 MWD
ASCII -> DMP 33 32 AFN 32 33 BTP
36: interactive document printing
SD keep parms 32 32 SDF 32 0 UPP
SD set parms 32 32 SDF 32 1 SPP
DM keep parms 32 33 MWD 32 0 UPP
DM set parms 32 33 MWD 32 1 SPP
DMP keep parms 32 33 BTP 32 0 UPP
DMP set parms 32 33 BTP 32 1 SPP
37: background document printing
SD keep parms 32 32 SDF 32 0 UPP
SD set parms 32 32 SDF 32 1 SPP
DM keep parms 32 33 MWD 32 0 UPP
DM set parms 32 33 MWD 32 1 SPP
DM keep parms 32 33 BTP 32 0 UPP
DMP set parms 32 33 BTP 32 1 SPP

13



14 |

Table 4 Legend:
AFN ASCII file name.
BTP Blank characters to bring up an interactive screen to prompt for

MWD; to include a centered title up to 64 characters long with your
interactive screen, enter an exclamation point, a blank space, then
the title as your string, i.e. “! Edit a Document”.

DM Document owned by MiniWord.

DMP Document owned by MiniWord with interactive prompt.

MWD MiniWord document name, folder and password.

SD Standalone document.

SDF Standalone document file name.

SPP Supply printing parameters in the function call (the format of the

print parameters is shown in the expanded table.
UPP Use existing document parameters for printing.




Table 4
Function Input file ¥nput file Input file  Output file Qutput file Output file
type interface name type interface name
38: interactive list processing
SD keep parms 32 32 SDF 32 0 UPP
SD set parms 32 32 SDF 32 1 SPP
DM keep parms 32 33 MWD 32 0 UPP
DM set parms 32 33 MWD 32 1 SPP
DMP keep parms 32 33 BTP 32 0 UPP
DMP set parms 32 33 BTP 32 1 SPP
39: background list processing
SD keep parms 32 32 SDF 32 0 UPP
SD set parms 32 32 SDF 32 1 SPP
DM keep parms 32 33 MWD 32 0 UPP
DM set parms 32 33 MWD 32 1 SPP
DMP keep parms 32 33 BTP 32 0 UPP
DMP set parms 32 33 BTP 32 1 SPP
40: integrate data and text into a document
data/text -> SD 32 32 SDF I I I
data/text -> DM 32 33 MWD I I 1
data/text -> DMP 32 33 BTP I I I
49: set list file or list document
SD 32 32 SDF I I I
DM 32 33 MWD I I I
DMP 32 33 BTP I I I
ASCII 33 32 AFN I I I

127: exit I 1

|15



16 |

Table5
Function Doc 1 file Doc 1 file Doc 1 file Doc2file Doc?2file Doc?2 file

unctio type interface name type interface name
41: concatenate two documents
SD + SD 32/34 32 SDF 32/34 32 SDF
SD + DM 32/34 32 SDF 32/34 33 MWD
SD + DMP 32/34 32 SDF 32/34 33 BTP
DM + SD 32/34 33 MWD 32/34 32 SDF
DM + DM 32/34 33 MWD 32/34 33 MWD
DM + DMP 32/34 33 MWD 32/34 33 BTP
DMP + SD 32/34 33 BTP 32/34 32 SDF
DMP + DM 32/34 33 BTP 32/34 33 MWD
DMP + DMP 32/34 33 BTP 32/34 33 BTP

Table 5 Legend:

BTP Blank characters to bring up an interactive screen to prompt for
MWD; to include a centered title up to 64 characters long with your
interactive screen, enter an exclamation point, a blank space, then
the title as your string, i.e. “! Edit a Document”.

DM Document owned by MiniWord.

DMP Document owned by MiniWord with interactive prompt.

MWD MiniWord document name, folder and password.

SD Standalone document.

SDF

Standalone document name.




Table 6

. , File , Block
Function File type interface First offset Last offset length

48: setting new file or document parameters

document 32 0 I I I
document 32 1 12 130 148
ASCII 33 0 | I |
ASCII 33 1 12 14 6
Table 6 Legend:
1 This field is ignored by the ToolKit.
Table 7
Function Data variable name Data variable value

50: set data variable

DVN DVV
Table 7 Legend:
DVN Up to 16 character data variable name.
DVV Up to 128 character data variable value; the ToolKit can store 32 vari-

ables; a blank string resets all variables.

17



18 |

Table 8
. Data : File ,
Function :l:z::ble File type interface File name
51: set text variable
Text var =SD DVN 32/34 32 SDF
Text var = DM DVN 32/34 33 MWD
Test var = DMP DVN 32/34 33 BTP

Table 8 Legend:

DVN
BTP

DM
DMP
MWD
SD
SDF

Up to 16 character data variable name.

Blank characters to bring up an interactive screen to prompt for MWD.
To include a centered title up to 64 characters long with your interac-
tive screen enter an exclamation point, a blank space, then the title as
your string, i.e. “! Edit a Document”.

Document owned by MiniWord.
Document owned by MiniWord with interactive prompt.
MiniWord document name, folder and password.

Standalone document.

Standalone document file name.




Table 9
Description Length Offset Values
32 - success
Return value 1 0 33 - failure
34 - fatal failure
Error message 60 4
See Table8

Once running, the ToolKit keeps processing all new instructions it receives from the com-
mand file. When the calling application program has no more instructions for the ToolKit
to process, it should shut the ToolKit down before moving to its next task. The calling
application program must send the exit command, 127, through the command file, read the
result file, close the two communication files, and wait for the ToolKit and all the child
processes created by the ToolKit to terminate. Shutting the ToolKit down can be accom-
plished with the STOPTK function supplied in the ToolKit Library. Refer to the section on
the ToolKit Library for more information about STOPTK.

The ToolKit informs the calling application program as to whether or not the requested
function executed successfully via the result file TKI#######. The file is 64 bytes long and
follows the format below. Getting a result from the ToolKit can be accomplished with the
READREF function supplied in the ToolKit Library. Refer to the section on the ToolKit
Library for more information about READRF.

See Table 9.

The first byte of the result contains the return value. This value reports whether the ToolKit
succeeded or failed to complete the requested task. A 32 in position zero indicates that the
ToolKit successfully completed the task. A 33 in position zero signals that the ToolKit
failed. The accompanying error message in position four of the result file explains why the
ToolKit failed. In rare cases the ToolKit will return a 34, a fatal failure, in position zero of
the result file. This error reveals that the ToolKit encountered an unexpected error from
which it could not recover. The ToolKit terminates every time it encounters a fatal error.
Application programs may want to read and display the error messages inside the applica-
tion. All unused bytes in the result file are set to zero.

19






TOOLKIT LIBRARIES

FILES

Along with the ToolKit programs, the installation tape also contains source code and librar-
ies for procedures that call and communicate with the ToolKit. The specific files are:

TKLIBSPL SPL source code for functions to start the ToolKit, stop the ToolKit, send
commands to the ToolKit, and receive results from the ToolKit. Use these
functions on MPE-V machines.

TKLIBC C source code for functions to start the ToolKit, stop the ToolKit, send
commands to the ToolKit, and receive results from the ToolKit. Use these
functions on MPE/iX machines.

TKLIBUSL MPE-V USL containing the compiled functions in TKLIBSPL.

TKLIBOBJ NMOBI file containing the compiled functions in TKLIBC.

Programs using these functions will need PH capability.

| 21



22 |

FUNCTIONS
Function STARTTK
Syntax: 116 CA 116 116 116

Use:

Parameters:

program

th_pid

tk_cf

tk_rf

return = STARTTK (program, tk_pid, tk_cf, tk_rf)
STARTTK starts the ToolKit, creates and opens both the command IPC

file and the result IPC file. STARTTK returns 0 if it is successful and -1
if it encounters an error.

character array
The name of the ToolKit program terminated by a blank. Usually this is
APPSRVRN.PUB.MINISOFT for MPE/iX, APPSRVR.PUB.MINISOFT
for MPE-V non-PM version, and APPSRVRP.PUB.MINISOFT for MPE-
V PM version. If the ToolKit programs are not installed in
PUB.MINISOFT, change the group and account accordingly.

16-bit signed integer by reference.

The process id of the ToolKit is returned in this parameter. The STOPTK
function uses this number.

16-bit signed integer by reference.

The file number of the command IPC file is returned in this parameter.
The STOPTK and WRITECF functions use this number.

16-bit integer by reference.

The file number of the result IPC file is returned in this parameter. The
STOPTK and READREF functions use this parameter.



| 23

Function STOPTK

Syntax:

Use:

Parameters:

tk_pid

tk cf

tk_rf

116 116V 116V 116V
return = STOPTK(tk_pid, tk_cf, tk_rf)

STOPTK stops the ToolKit, closes and deletes both the command IPC file

and the result IPC file. STOPTK returns 0 if it is successful and -1 if it
encounters an error.

16-bit signed integer by value.
The process id of the ToolKit as returned by the STARTTK function.
16-bit signed integer by value.

The file number of the command IPC file as returned by the STARTTK
function.

16-bit integer by value.

The file number of the result IPC file as returned by the STARTTK func-
tion.



24 |

Function WRITECF

Syntax: I16 Iev. CA
return = WRITECF (¢tk_cf, buffer)

Use: WRITECF sends a command to the ToolKit. WRITECF returns 0 if it is
successful and -1 if it encounters an error.

Parameters:

tk_cf 16-bit signed integer by value.
The file number of the command IPC file as returned by the STARTTK
function.

buffer Character array.
The 256 character array containing the command and the parameters to be
sent to the ToolKit.

Function READRF

Syntax: I16 I16v. CA
return = READRF(tk_rf, buffer)

Use: READREF receives the result of the last command sent to the ToolKit.
READREF returns 0 if it is successful and -1 if it encounters an error.

Parameters:

tk rf 16-bit signed integer by value.
The file number of the result IPC file as returned by the STARTTK func-
tion.

buffer Character array.

The result of the last command sent to the ToolKit is returned in this pa-
rameter. The size of the array must be at least 64 characters.



Definition of symbols:

I16

CA

Notes:

16-bit signed integer.
Character array.

If a symbol is followed by a ‘V’, the parameter is passed by value, other-
wise the parameter is passed by reference.

The functions must be declared as external and of the proper type in the
source code of the calling application. Failure to do this may cause the
calling application to assume the function type is different from its actual
type. This can cause stack overflows and underflows.

Make sure the application passes the correct number and type of param-
eters. The address of the actual parameter should be passed for param-
eters passed by reference. The value of the actual parameter should be
passed by value. Mistakes in either the number, type, or passing type of
parameters can cause very unpredictable results.

These functions can be used from source code, USL (MPE-V), RL (MPE-
V or MPE/iX), SL (MPE-V), or XL (MPE/iX). Use the Segmenter on
MPE-V to create RLs and SLs. Use the Link Editor/XL on MPE/iX to
create RLs and XLs.

| 25



26 |

The following is a listing of the file TKLIBSPL:

$CONTROL USLINIT,SUBPROGRAM
BEGIN

<< Example procedures to start, stop and communicate with the ToolKit >>
<< for MPE-V >>

<< receive results from the ToolKit >>
INTEGER PROCEDURE READRF(TK'RF, BUF);
VALUE TK'RF;
INTEGER TK'RF;
BYTE ARRAY BUF;
BEGIN
INTRINSIC FREAD;

FREAD(TK'RF, BUF, -64);
IF <> THEN BEGIN

READREF :=-1;
END ELSE BEGIN
READREF := 0;
END;
END;

<< send a command to the ToolKit >>
INTEGER PROCEDURE WRITECF(TK'CF, BUF);
VALUE TK'CF;
INTEGER TK'CF;
BYTE ARRAY BUF;
BEGIN
INTRINSIC FWRITE;

FWRITE(TK'CF, BUF, -256, 0);
IF <> THEN BEGIN

WRITECF := -1;
END ELSE BEGIN



| 27

WRITECF :=0;
END;
END;

<< this procedure creates the two IPC files needed to communicate with >>
<< the ToolKit, and starts the ToolKit program >>
INTEGER PROCEDURE STARTTK(PROG, TK'PID, TK’'CF, TK'RF);
BYTE ARRAY PROG;
INTEGER TK'PID, TK'CF, TK'RF);
BEGIN
INTRINSIC PROCINFO, ASCII, FOPEN, FCLOSE, FCHECK,
CREATEPROCESS, ACTIVATE;
BYTE ARRAY BUF(0:5), IP’"NM(0:8), OP’NM(0:8);
INTEGER ARRAY ITEMNUM(0:2);
LOGICAL ARRAY ITEMS(0:2);
INTEGER 1,J, K, ERR, ERR1, ERRZ2;
INTEGER IT1, IT2, PIN;

<< get this processes process id >>
IT :=1;
IT2:=0;
PROCINFO(ERR1, ERR2, 0, IT1, PIN, IT2, BUF);
IF <> THEN BEGIN
STARTTK :=-1;
RETURN,;
END;

<< IPC file names are TKO##### and TKI##HHEE, where TKO####Ht is the command >>
<< output IPC file and TKI#HHH#H# is the status return IPC file, and where ##HHH >>
<< is this processes process id, right justified and zero filled. >>
| := ASCII(PIN, 10, BUF);
J=0;
FOR K :=3 UNTIL 7 DO BEGIN
IF I < (8 - K) THEN BEGIN
IPPNM(K) := OP’NM(K) := “0”;
END ELSE BEGIN



28 |

IP’NM(K) := OP’NM(K) := BUF(J);
J=J+1;
END;

END;

IP’NM(0) := OP’NM(0) := “T”;

IP’NM(1) := OP’NM(1) := “K”;

IP’NM(2) :=“I";

OP’NM(2) := “O”;

IP’NM(8) := OP’NM(8) :=“*;

<< check to see if the status return IPC file already exists. If it >>
<< exists, purge it. >>

<< foptions: >>

<< Domain - 10, old temp file >>

<< ASCII/Binary - 0, Binary >>

<< Default file Desig. - 000 >>

<< Record Format - 01, variable length records >>
<< Disallow File Equation - 1, Disallow :FILE >>
<< Aoptions: >>

<< Access type - 0000, Read access >>

<< Exclusive - 01, Exclusive access >>

<< Multi-Access - 01, Intra-job multi-access >>

| := FOPEN(IP’NM, %(16)0442, %(16)0240);
IF <> THEN BEGIN
FCLOSE(I, 4, 0);
END ELSE BEGIN
FCHECK(I, K);
IF K=0 THEN BEGIN
FCLOSE(l, 4, 0);
END;
END;
<< create the status return IPC file, close and save it, then reopen it >>
<< foptions: >>
<< Domain - 00, new file >>
<< ASCII/Binary - 0, Binary >>
<< Default File Desig. - 000 >>



<< Record Format - 10, variable length records >>
<< Disallow File Equation - 1, Disallow :FILE >>
<< File Type - IPC file >>

<< Aoptions: >>

<< N/A >>

| := FOPEN(IP’'NM, %(16)3440,,32,,,,1,,2D,1,1);
FCLOSE(l, 2, 0);
<< foptions: >>
<< Domain - 10, old temp file >>
<< ASCll/binary - 0, binary >>
<< Default File Desig. - 000 >>
<< Record Format - 01, variable length records >>
<< Disallow File Equation - 1, Disallow :FILE >>
<< Aoptions: >>
<< Access Type - 0000, Read access >>
<< Exclusive - 01, Exclusive access, >>
<< Multi-Access - 01, Intra-job multi-access >>

| := FOPEN(IP'NM, %(16)0442, %(16)0240);
TK'RF = 1;

<< check to see if the command IPC file already exists.

<< exists, purge it. >>

<< foptions: >>

<< Domain - 10, old temp file >>

<< ASCII/Binary - 0, binary >>

<< Default File Desig. - 000 >>

<< Record format - 01, variable length records >>
<< Disallow File Equations - 1, Disallow :FILE >>
<< Aoptions: >>

<< Access Type - 0001, Write access >>

<< Exclusive - 01, Exclusive access >>

<< Multi-Access - 01, Intra-job multi-access >>

| := FOPEN(OP’NM, %(16)0442, %(16)0241);
IF <> THEN BEGIN

If it >>

29



30 |

FCLOSE(l, 4, 0);
END ELSE BEGIN
FCHECK(, J);
IF K=0 THEN BEGIN
FCLOSE(I, 4, 0);
END;
END;
<< create the command IPC file, close it and save it, then reopen it >>
<< foptions: >>
<< Domain - 00, new file >>
<< ASCII/Binary - 0, Binary >>
<< Default File Desig. - 000 >>
<< Record Format - 01, variable length records >>
<< Disallow File Equations - 1, Disallow :FILE >>
<< File Type - IPC file >>
<< Aoptions: >>
<< N/A >>

| := FOPEN(OP’NM, %(16)3440,,128,,,,1,,2D,1,1);
FCLOSE(l, 2, 0);
<< foptions: >>
<< Domain - 10, old temp file >>
<< ASCII/Binary - 0, Binary >>
<< Default File Desig. - 000 >>
<< Record Format - 01, variable length records >>
<< Disallow File Equation - 1, Disallow :FILE >>
<< Aoptions: >>
<< Access Type - 0001, Write access >>
<< Exclusive - 01, Exclusive access, >>
<< Multi-Access - 01, Intra-job multi-access >>

| := FOPEN(OP’NM, %(16)0442, %(16)0241);
TK'CF := I;

<< set parameters for CREATEPROCESS intrinsic >>
<< load option flags - Bit 15 = 1; >>

ITEMNUM(0) := 3;

ITEMS(0) := 1;



| 31

<< set PARM value to 17 >>
ITEMNUM(1) := 2;

ITEMS(1) := 17;
ITEMNUM(2) := 0;
ITEMS(2) := 0;

<< create and activate the ToolKit >>
CREATEPROCESS(ERR, TK'PID, PROG, ITEMNUM, ITEMS);
IF <> THEN BEGIN
STARTTK = -1;
RETURN;
END;
ACTIVATE(TK'PID);
IF <> THEN BEGIN
STARTTK = -1;
RETURN;
END;
STARTTK :=0;
END;

<< this procedure stops the ToolKit to terminate, then >>
<< closes and purges the IPC files. >>
INTEGER PROCEDURE STOPTK(TK'PID, TK'CF, TK’'RF);
VALUE TK'PID, TK'CF, TK'RF;
INTEGER TK'PID, TK'CF, TK'RF;
BEGIN
INTRINSIC FCLOSE, GETPROCINFO, PAUSE;
REAL T;
DOUBLE STAT;
INTEGER |,
BYTE ARRAY BUF(0:255);
LOGICAL EXIT;

<< send exit command to ToolKit >>
MOVE BUF(1) := 255(* “);
BUF(0) := 127;
IF WRITECF(TK'CF, BUF) = -1 THEN BEGIN
STOPTK := -1;
RETURN;



32 ]

END;

IF READRF(TK'RF, BUF) = -1 THEN BEGIN
STOPTK :=-1;
RETURN;

END;

<< close and purge IPC files >>
FCLOSE(TK'RF, 4, 0);
IF <> THEN BEGIN
STOPTK := -1;
RETURN;
END;
FCLOSE(TK'CF, 4, 0);
IF <> THEN BEGIN
STOPTK = -1;
RETURN;
END;
<< wait for ToolKit to terminate >>
T:=1.0;
EXIT := FALSE;
DO BEGIN
STAT := GETPROCINFO(TK'PID);
IF <> THEN BEGIN
EXIT := TRUE;
END ELSE BEGIN
PAUSE(T);
END;
END UNTIL EXIT = TRUE;
STOPTK := 0;
END;

END.



| 33

The following is a listing of the file TKLIBC:

/* Example procedures to start, stop and communicate with the ToolKit */
I* FOR MPE/iX */

#include <mpe.h>

#pragma intrinsic ASCII

#pragma intrinsic PROCINFO
#pragma intrinsic FOPEN
#pragma intrinsic FCLOSE
#pragma intrinsic FREAD
#pragma intrinsic FWRITE
#pragma intrinsic FCHECK
#pragma intrinsic PAUSE
#pragma intrinsic CREATEPROCESS
#pragma intrinsic ACTIVATE
#pragma intrinsic GETPROCINFO

/* this procedure creates the two IPC files needed to communicate with
the ToolKit, and starts the ToolKit program */
short int STARTTK(prog, tk_pid, tk_cf, tk_rf)
char *prog;
short int *tk_pid, *tk_cf, *tk_rf;
{
short int i, j, k, pin, err1, err2;
int itemnum[4], items[4], err;
char buf[6], ip_nm[9], op_nm[9];

/* get this processes process id */
PROCINFO(&err1, &err2, 0, 1, &pin);
if (ccode() == CCL) {

return(-1);

}

/* IPC file names are TKI##HHH# and TKO##HEHH, where TKO###HE is the command
output IPC file and TKI##HH#H is the status return IPC file, and where ##H##HHH



34 |

is this processes process id, right justified and zero filled. */
i = ASClI(pin, 10, buf);
for (k=3,j=0; k<8; ++k) {
ip_nm[k] = op_nm[k] = (i < 8 - k) ? ‘0’ :buf[j++];
}
ip_nm[0] = op_nm[0] = ‘T";
ip_nm[1] = op_nm[1] = ‘K’;
ip_nm[2] =I’;
op_nm[2] =‘O’;
ip_nm[8] = op_nm[8] ="";

/* check to see if the status return IPC file already exists. If it /*
exists, purge it. */
/* foptions:
Domain - 10, old temp file
ASCII/Binary - 0, Binary
Default File Desig. - 000
Record Format - 01, variable length records
Disallow File Equations - 1, Disallow :FILE
Aoptions:
Access Type - 0000, Read access
Exclusive - 01, Exclusive access
Multi-Access - 01, Intra-job multi-access
*/
i = FOPEN(ip_nm, 0x0442, 0x0240);
if (ccode() == CCE) {
FCLOSE(i, 4, 0);
}else {
FCHECK(i, &k);
if (k ==0) {
FCLOSE(i, 4, 0);
}
}

/* create the status return IPC file, close and save it, then reopen it */
/* foptions:

Domain - 00, new file

ASCII/Binary - 0, Binary



| 35

Default File Desig. - 000
Record Format - 01, variable length records
Disallow File Equations - 1, Disallow :FILE
File Type - IPC file
Aoptions:
N/A
*/
i = FOPEN(ip_nm, 0x3440,,32,,,,1,,2L,1,1);
FCLOSE(i, 2, 0);
[* foptions:
Domain - 10, old temp file
ASCII/Binary - 0, Binary
Default File Desig. - 000
Record Format - 01, variable length records
Disallow File Equation - 1, Disallow :FILE
Aoptions:
Access Type - 0000, Read Access
Exclusive - 01, Exclusive access,
Multi-Access - 01, Intra-job multi-access
*/
i = FOPEN(ip_nm, 0x0442, 0x0240);
*tk_rf =1i;

/* check to see if the command IPC file already exists. If it
exists, purge it. */
/* foptions:
Domain - 10, old temp file
ASCII/Binary - 0, Binary
Default File Desig. - 000
Record format - 01, variable length records
Disallow File Equation - 1, Disallow :FILE
Aoptions:
Access Type - 0001, Write access
Exclusive - 01, Exclusive access
Multi-Access - 01, Intra-job multi-access
*/
i = FOPEN(op_nm, 0x0442, 0x0241);



36 |

if (ccode() == CCE) {
FCLOSE(i, 4, 0);
}else {
FCHECK(i, &k);
if (k ==0) {
FCLOSE(i, 4, 0);
}
}

/* create the command IPC file, close and save it, then reopen it */
/* foptions:
Domain - 00, new file
ASCII/Binary - 0, Binary
Default File Desig. - 000
Record Format - 01, variable length records
Disallow File Equations - 1, Disallow :FILE
File Type - IPC file
Aoptions:
N/A
*/
i = FOPEN(iop_nm, 0x3440 ,, 128 ,,,, 1 ,, 2L, 1, 1);
FCLOSE(i, 2, 0);
/* foptions:
Domain - 10, old temp file
ASCII/Binary - 0, Binary
Default File Desig. - 000
Record Format - 01, variable length records
Disallow File Equation - 1, Disallow :FILE
Aoptions:
Access Type - 0001, Write access
Exclusive - 01, Exclusive access
Multi-Access - 01, Intra-job multi-access
*/
i = FOPEN(op_nm, 0x0442, 0x0241);
*tk_cf=1i;

/* set parameters for CREATEPROCESS intrinsic */
/* load option flags - Bit 15 =1 */



37

itemnum([0] = 3;
items[0] = 0x01;

/* set INFO string to “17” */
itemnum[1] = 11;
items[1] = (int) “177;
itemnum[2] = 12;
items[2] = 2;
itemnum[3] = 0;
items[3] = 0;

[* create and activate the ToolKit */
CREATEPROCESS(&err, tk_pid, prog, itemnum, items);
if (ccode() = CCE) {

return(-1);
}
ACTIVATE(*tk_pid);
if (ccode() = CCE) {
return(-1);
}

return(0);

}

/* this procedure stops the ToolKit to terminate, then
closes and purges the IPC files. */

short int STOPTK(tk_pid, tk_cf, tk_rf)

short int tk_pid, tk_cf, tk_rf;

{

float t;

long stat;

short int i, WRITECF(), READRF();

char buf[256];

/* send exit command to ToolKit */
for (i = 0; i < 256; ++i) {
buf [i]=""
}
buf[0] = Ox7F;
if (WRITECF(tk_cf, buf) == -1) {



38 |

return(-1);

}

if (READRF(tk_rf, buf) == -1){
return(-1);

}

/* close and purge IPC files */
FCLOSE(tk_rf, 4, 0);
if (ccode() = CCE) {
return(-1);
}
FCLOSE(tk_cf, 4, 0);
if (ccode () I= CCE) {
return(-1);

}

/* wait for ToolKit to terminate */
t=1;

do {
stat = GETPROCINFO(tk_pid);
if (ccode() != CCE) break;
PAUSE(&t);

} while(1);

return(0);

}

/* receive result from the ToolKit */
short int READRF(tk_rf, buf)
short int tk_rf;
char *buf;
{
FREAD(tk_rf, (short unsigned *) buf, -64);
if (ccode() = CCE) {
return(-1);
}
return(0);

}



39

/* send a command to the ToolKit */
short int WRITECF(tk_cf, buf)
short int tk_cf;
char *buf;
{
FWRITE(tk_cf, (short unsigned *) buf, -256, 0);
if (ccode() != CCE {
return(-1)
}

return(0);

}






CREATE A DOCUMENT = EXPANDED TABLE

This function creates a new document or glossary by using the MiniWord editor. It enables
you to create either a standalone document or a document owned by MiniWord. New
documents receive their formatting parameters from the defaults set in MiniWord or from
the parameters set with ToolKit function 48. The output file name specifies both the name

and location of the document. See Table 10.

Table 10
Description Length Offset Values
Function 1 0 32 - create/edit
Reserved 7 1
Input file type 1 8 ignored
Input file interface 1 9 iginored
Input file name 120 12 blank string
Output file type 1 132 32 - document
34 - glossary
Output file interface 1 133 32 - standalone file
33 - document owned
by MiniWord
For output file interface = 32:
Output file name 120 136
For output file interface = 33:
Document name supplied? 1 136 32 - yes
33 - no
For document name supplied = 32: 24 138
Document name 60 162
Folder name 8 222
Password
For document name supplied = 33:
Optional menu title 64 138

| 41



42 |

EDIT A DOCUMENT = ExpaNDED TABLE

This function calls the MiniWord editor to edit the document or glossary specified by the
input file name. You may edit a standalone document or document owned by MiniWord.
See Table 11.

Table 11
Description Length Offset Values
Function 1 0 32 - create/edit
Reserved 7 |
Input file type 1 8 32 - document
34 - glossary
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For input file interface = 32:
Input file name 120 12
For input file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplies = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Output file type 1 132 ignored
Output file nterface 1 133 ignored
Output file name 120 136 blank string




| 43

DISPLAY A DOCUMENT = EXPANDED TABLE

This function displays the contents of the document specified by the input file name onto
the CRT screen. You can display either a standalone document or a document owned by
MiniWord. See Table 12.

Table 12
Description Length Offset Values
Function 1 0 33 - display
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For input file interface = 32:
Input file name 120 12
For input file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Output file type 1 132 ignored
Output file interface 1 133 ignored
Output file name 120 136 ignored




44 |

COPY A DOCUMENT = EXPANDED TABLE

This function copies the source document, specified by the input file name, to the destina-
tion document, specified by the output file name. Both the source document and the desti-
nation document may be either standalone documents or documents owned by MiniWord.

If the destination document already exists, the copy function overwrites it with the source
document. However, if you are copying a document owned by MiniWord and are using the
prompt option, you will be given a choice to either overwrite the destination document or
cancel the copy operation.

MAIN USES:
¢ To copy a document owned by MiniWord to a standalone document, or to copy a
standalone document to a document owned by MiniWord.

¢ To make many copies of a single master document. Many applications generate docu-
ments that vary only slightly from one document, called the Master. Use the copy
function to create working copies which can be modified without affecting the master.

¢ For document archiving and transfer procedures.

See Table 13.



Table 13
Description Length Offset Values
Function 1 0 34 - copy
Reserved 7 1
Input file type* 1 8 32 - document
34 - glossary
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For input file interface = 32:
Input file name 120 12
For input file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Output file type* 1 132 32 - document
34 - glossary
Output file interface 1 133 32 - standalone file
33 - document owned by
MiniWord
For output file nterface = 32:
Output file name 120 136
For output file nterface = 33:
Document name supplied? 1 136 32 - yes
33 -no
For document name supplied = 32:
Document name 24 138
Folder name 60 162
Password 8 222
For document name supplied = 33:
Optional menu title 64 138

| 45



46 |

CONVERT A DOCUMENT TO AN ASCII

FILE - EXPANDED TABLE

This function converts a document, specified by the input file name, to an ASCII file,
specified by the output file name. The document may be a standalone document or a docu-
ment owned by MiniWord. Set the ASCII file record size and file size with ToolKit func-
tion 48 (on the HPe3000 only, you may use the defaults for the record size and file size
which are 200 and 10000 respectively). Set the record size to the largest right margin used
in your document and set the file size to the maximum number of lines in your document.
Once the document is converted to an ASCII file, the ASCII file is truncated at its EOF to
remove any unused space.

MAIN USES:

¢ To convert a document to an ASCII file to merge it into a report generated by an appli-
cation program.

¢ To convert a document to an ASCII file to pass it to an application that requires ASCII
text as input, i.e. TELEX, FAX or typesetting applications.

¢ To convert a document to an ASCII file to store it in a database. Many applications
only allow ASCII text to be stored in their data bases. An application program can use
the ToolKit to create text with MiniWord and convert it to an ASCII file so that it can be
stored in the database in the proper format.

See Table 14.



Table 14
Description Length Offset Values
Function 1 0 35 - convert
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For mput file interface = 32:
Input file name 120 12
For mput file interface = 33:
Document name supplied? 1 12 32 - yes
33 -no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Output file type 1 132 33 - ASCII
Output file interface 1 133 32 - ASCII file
Output file name 120 136 ASCII file name

| 47



438 |

CONVERT AN ASCII FILE TO DOCUMENT

- EXPANDED TABLE

This function converts an ASCII file, specified by the input file name, to a document,
specified by the output file name. The document may be a standalone document or one
owned by MiniWord. If the document already exists, the conversion function overwrites it
with the converted copy of the ASCII file. However, if you are converting to a document
owned by MiniWord and are using the prompt option, you will be given a choice to either
overwrite the MiniWord or cancel the conversion operation.

The new document receives its formatting parameters from the defaults set in MiniWord or
from the parameters set with ToolKit function 48. In order to format the document cor-
rectly the left and right margin parameters must match the left and right margins of the
ASCII file. This insures proper paragraph formatting and elimination of leading blanks.

MAIN USES:

¢ To convert ASCII output from an application into document format to take advantage
of MiniWord’s word processing features.

See Table 15.



Table 15
Description Length Offset Values
Function 1 0 35 - convert
Reserved 7 1
Input file type 1 8 33 - ASCII
Input file interface 1 9 32 - ASCII file
Input file name 120 12 ASCII file name
Output file type 1 132 32 - document
Output file interface 1 133 32 - standalone file
33 - document owned by
MiniWord
For output file interface = 32:
Output file name 120 136
For output file interface = 33:
Document name supplied? 1 136 32 - yes
33 - no
For document name supplied = 32:
Document name 24 138
Folder name 60 162
Password 8 222
For document name supplied = 33:
Optional menu title 64 138

| 49



50 |

INTERACTIVE DOCUMENT PRINTING -

EXPANDED TABLE

This function prints the document specified by the input file name. The document may be
a standalone document or a document owned by MiniWord. The printing function uses the
MiniWord print menu which gives users interactive control over the printing process.

The print menu can gather printing parameters either from the document or from the func-
tion request itself (see following table). If the function request supplies one parameter, it
must supply all other parameters as well.

The format for all parameters which represent numbers and are two bytes long (two-byte
numerics) must have the most significant bits of the number in byte one and the least sig-
nificant bits of the number in byte two, as illustrated in the diagram below:

byte 1 | byte2 | = msb Isb

An example of a two-byte numeric is the “Start printing with page #” parameter.

See Table 16 and Table 17.



Table 16
Description Length Offset Values
Function 1 0 36 - interactive print
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For mput file interface = 32:
Input file name 120 12
For mput file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Use original defaults? 1 135 0 - yes
1 -no
Printer name 8 136 printer defined to Manager
Print mode 1 144 0 - continuous
1 - single sheet
2 - pause lst page
3 - no form feeds
4 - twin sheet feeder
Copies 1 145 1 to 99
Left margin 1 146 0 to 99
Line spacing 1 147 0 - single spacing
1 - double spacing
Font 1 148 0 - draft

1 - letter quality

| 51



52 ]

Table 17

Description Length Offset Values

Global initial sequences # 1 149 0 - initial sequence 1
1 - initial sequence 2
2 - initial sequence 3
3 - initial sequence 4
4 - initial sequence 5

Global terminating seq. # 1 150 0 - terminating seq. 1
1 - terminating seq. 2
2 - terminating seq. 3
3 - terminating seq. 4
4 - terminating seq. 5

Starting printing with page # 2 152 0 to 9999

End printing after page # 2 154 0 to 9999

Start page number with 2 156 0 to 9999

Start headings on page # 2 158 0 to 9999

Start footings on page # 2 160 0 to 9999




BACKGROUND DOCUMENT PRINTING -

EXPANDED TABLE

This function prints the document specified by the input file name. The document may be
a standalone document or a document owned by MiniWord.

The background document printing function is almost identical to the interactive document
printing function except that it does not use the MiniWord print menu. All printing is done
behind the scenes.

The print menu can gather printing parameters either from the document or from the func-
tion request itself (see the table below). If the function request supplies one parameter, it
must supply all other parameters as well.

The format for all parameters which represent numbers and are two bytes long (two-byte
numerics) must have the most significant bits of the number in byte one and the least sig-
nificant bits of the number in byte two, as illustrated in the diagram below:

byte 1 | byte2| = msb Isb

An example of a two-byte numeric is the “Start printing with page #” parameter.

See Table 18 and Table 19.

| 53



54 |

Table 18
Description Length Offset Values
Function 1 0 37 - background print
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For nput file nterface = 32:
Input file name 120 12
For input file nterface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Use original defaults? 1 135 0 - yes
1-no
Printer name 8 136 0 - continuous
Print mode 1 144 1 - single sheet
2 - pause 1st page
3 - no form feeds
4 - twin sheet feeder
Copies 1 145 1to 99
Left margin 1 146 0 to 99
Line spacing 1 147 0 - single spacing
1 - double spacing




Table 19

Description Length Offset Values

Font 1 148 0 - draft
1 - letter quality
2 - proportional

Global initial sequence # 1 149 0 - initial sequence 1
1 - mitial sequence 2
2 - initial sequence 3
3 - iitial sequence 4
4 - initial sequence 5

Global terminating sequence # 1 150 0 - terminating seq. 1
1 - terminating seq. 2
2 - terminating seq. 3
3 - terminating seq. 4
4 - terminating seq. 5

Start printing with page # 2 152 0 to 9999

End printing after page # 2 154 0 to 9999

Start page number with 2 156 0 to 9999

Start headings on page # 2 158 0 to 9999

Start footings on page # 2 160 0 to 9999

| 55



56 |

INTERACTIVE LIST PROCESSING = ExpaNpED

TABLE

This function merges data from a list with a form document specified by the input file
name. The resulting output is sent to a printer. The form document may be a standalone
document or a document owned by MiniWord.

The interactive list processing function is almost identical to the interactive document printing
function except that the list of data must be defined with ToolKit function 49 before the
function can be used.

The print menu, which lets you control list processing, can gather printing parameters ei-
ther from the form document or from the function request itself (see the table below). If the
function request supplies one parameter, it must supply all other parameters as well.

The format for all parameters which represent numbers and are two bytes long (two-byte
numerics) must have the most significant bits of the number in byte one and the least sig-
nificant bits of the number in byte two, as illustrated:

byte 1 | byte2| = msb Isb

An example of a two-byte numeric is the “Start printing with page #” parameter.

See Table 20 and Table 21.



Table 20
Description Length Offset Values
Function 1 0 38 - mteractive list
processing
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For mput file interface = 32:
Input file name 120 12
For mput file interface = 33:
Document name supplied? 1 12 32 - yes
33 -no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Use original defaults? 1 135 0 - yes
1 - no
Printer name 8 136 0 - continuous
Print mode 1 144 1 - single sheet

2 - pause lst page
3 - no form feeds
4 - twin sheet feeder

| 57



58]

Table 21
Description Length Offset Values
Copies 1 145 1 to 99
Left margin 1 146 0 to 99
Line spacing 1 147 0 - single spacing
1 - double spacing
Font 1 148 0 - draft
1 - letter quality
2 - proportional
Global initial sequence # 1 149 0 - initial sequence 1
1 - initial sequence 2
2 - initial sequence 3
3 - mitial sequence 4
4 - initial sequence 5
Global terminating seq. # 1 150 0 - terminating seq. 1
1 - terminating seq. 2
2 - terminating seq. 3
3 - terminating seq. 4
4 - terminating seq. 5
Start printing with page # 2 152 0 to 9999
End printing after page # 2 154 0 to 9999
Start page number with 2 156 0 to 9999
Start headings on page # 2 158 0 to 9999
Start footings on page # 2 160 0 to 9999




BACKGROUND LIST PROCESSING -

EXPANDED TABLE

This function merges data from a list with a form document specified by the input file
name without using the interactive menu. The resulting output is sent to a printer. The
form document may be a standalone document or a document owned by MiniWord.

The background list processing function is almost identical to the interactive list processing
function except that it does not use the print menu. As with interactive list processing the
list of data must be defined with ToolKit function 49 before the function can be used.

Printing parameters can be taken from either the form document or from the function re-
quest itself (see the table below). If the function request supplies one parameter, it must
supply all other parameters as well.

The format for all parameters which represent numbers and are two bytes long (two-byte
numerics) must have the most significant bits of the number in byte one and the least sig-
nificant bits of the number in byte two. As illustrated:

byte 1 | byte2| = msb Isb

An example of a two-byte numeric is the “Start printing with page #” parameter.

See Table 22 and Table 23.

| 59



60 |

Table 22
Description Length Offset Values
Function 1 0 39 - background list
processing
Reserved 7 1
Input file type 1 8 32 - document
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For input file interface = 32:
Input file name 120 12
For input file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Use original defaults? 1 135 0 - yes
1 -no
Printer name 8 136
Print mode 1 144 0 - continuous

1 - single sheet

2 - pause 1st page

3 - no form feeds

4 - twin sheet feeder




Table 23
Description Length Offset Values
Copies 1 145 11099
Left margin 1 146 0to 99
Line spacing 1 147 0 - single spacing
1 - double spacing
Font 1 148 0 - draft
1 - letter quality
2 - proportional
Global initial sequence # 1 149 0 - nitial sequence 1
1 - initial sequence 2
2 - mnitial sequence 3
3 - initial sequence 4
4 - initial sequence 5
Global terminating seq. # 1 150 0 - terminating seq. 1
1 - terminating seq. 2
2 - terminating seq. 3
3 - terminating seq. 4
4 - terminating seq. 5
Start printing with page # 2 152 0 to 9999
End printing after page # 2 154 0 to 9999
Start page number with 2 156 0 to 9999
Start headings with page # 2 158 0 to 9999
Start footings with page # 2 160 0 to 9999

| 61



62 |

INTEGRATE DATA AND TEXT INTO A
DOCUMENT = EXPANDED TABLE

This function replaces variables in a document with data from an application or text from
another document or glossary. The document is specified by the input file name and may
be a standalone document or a document owned by MiniWord. All data variables and their
values must be defined using ToolKit functions 50 and/or 51.

MAIN USES:

To integrate, from an application, the name and address from an inquiry screen with a form
letter created in MiniWord. The procedure would be as follows:

1.

Create the form letter in MiniWord. Mark the name and address information as vari-
able. This document functions as the master copy and is not changed by the calling
application.

The application conducts the inquiry. If the user wishes to generate a letter from the
information on the screen, the application would request that the ToolKit create a work-
ing copy of the form letter from the master copy of the form letter.

The application would then repeatedly call ToolKit function 50 to define the variables
and their values for the ToolKit.

The next step requires the application to integrate the defined values into the working
copy of the form letter by using ToolKit function 40.

At this point the application could process the working copy of the letter as needed, i.e.
print it, store it, and so forth.

See Table 24.



Table 24

Description Length Offset Values

Function 1 0 40 - integrate data and text
into a document

Reserved 7 1

Input file type 1 8 32 - document
34 - glossary

Input file interface 1 8 32 - standalone file
33 - document owned by
MiniWord

For input file interface = 32:

Input file name 120 12

For mnput file interface = 33:

Document name supplied? 1 12 32 - yes
33 - no

For document name supplied = 32:

Document name 24 14

Folder name 60 38

Password 8 98

For document name supplied = 33:

Optional menu title 64 14

Output file type 1 132 ignored

Output file interface 1 133 ignored

Output file name 120 136 ignored

| 63



64 |

CONCATENATE TWO DOCUMENTS -

EXPANDED TABLE

This function will append a document or glossary to another document or glossary. The
documents are specified by document name 1 and document name 2 and may be standalone
documents or documents owned by MiniWord. Document 2 is appended to document 1.
The main use of this function is to assemble a document from many other smaller docu-
ments.

See Table 25.



Description Length Offset Values

Function 1 0 41 - concatenate two
documents

Reserved 7 1

Document 1 file type 1 8 32 - document
34 - glossary

Document 1 file interface 1 9 32 - standalone file
33 - document owned by
MiniWord

For document 1 file interface = 32:

Document 1 file name 120 12

For document 1 file interface = 33:

Document name supplied? 1 12 32 - yes
33 -no

For document name supplied = 32:

Document name 24 14

Folder name 60 38

Password 8 98

For document name supplied = 33:

Optional menu title 64 14

Document 2 file type 1 132 32 - document
34 - glossary

Document 2 file interface 1 133 32 - standalone file
33 - document owned by
MiniWord

For document 2 file interface = 32:

Document 2 file name 120 136

For document 2 file interface = 33:

Document name supplied? 1 136 32 - yes
33 -no

For document name supplied = 32:

Document name 24 138

Folder name 60 162

Password 8 222

For document name supplied = 33:

Optional menu title 64 138

| 65



66 |

DELETE A DOCUMENT = EXPANDED TABLE

This function will delete the document specified by the input file name. You can delete

either a standalone document or a document owned by MiniWord. See Table 26.

Table 26
Description Length Offset Values
Function 1 0 42 - delete
Reserved 7 1
Input file type 1 8 32 - document
34 - glossary
Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord
For nput file interface = 32:
Input file name 120 12
For input file interface = 33:
Document name supplied? 1 12 32 - yes
33 - no
For document name supplied = 32:
Document name 24 14
Folder name 60 38
Password 8 98
For document name supplied = 33:
Optional menu title 64 14
Output file type 1 132 ignored
Output file interface 1 133 ignored
Output file name 120 136 ignored




SET NEW FILE OR DOCUMENT
PARAMETERS = EXPANDED TABLE

This function sets the parameters for new documents and ASCII files. You can set all the
parameters individually or you can use the default parameters already set in MiniWord.
The ToolKit uses the parameters set by this function whenever it creates new documents or
ASCII files.

The format for all parameters which represent numbers and are two byte long (two-byte
numerics) must have the most significant bits of the number in byte one and the least sig-
nificant bits of the number in byte two, as illustrated:

byte 1l | byte2| = msb Isb

An example of a two-byte numeric is the “Start printing with page #” parameter.

The format for all parameters which represent numbers and are four bytes long (four byte
numerics) must have the most significant bits of the number in byte one, the next most
significant bits in bytes two and three, and the least significant bits of the number in byte
four, as diagramed below:

byte 1 || byte 2 || byte 3 || byte 4 | = msb > > Isb

An example of a four-byte numeric is the “File size” parameter.

See Table 27.

67



Table 27

Description Length Offset Values
Function 1 0 48 - set new ASCII file or
document parameters
Reserved 7 1 32 - document
File type 1 8 33 - ASCII
For file type document:
Use original defaults? 1 9 0- yes
1-no
Read access 1 12 0 - creator
1 - all users
Write access 1 13 0 - creator
1 - all users
Delete access 1 14 0 - creator
1 - all users
Printer name 8 15
Print mode 1 23 0 - continuous
1 - single sheet
2 - pause 1st page
3 - no form feeds
4 - twin sheet feeder
Copies 1 24 1 to 99
Left margin | 25 0 to 99
Line spacing 1 26 0 - single spacing
1 - double spacing
Font 1 27 0 - draft

1 - letter quality
2 - proportional




Description

Length

Offset

Values

Global initial sequence #

Global terminating seq. #

Start printing with page #
End printing after page #
Start page number with
Start headings on page #
Start footings on page #
Lines per page

Top margin

Bottom margin

Pitch

Lines per inch

Page initial sequence #

e el \S T S I (S I (S I \S)

28

29

30
32
34
36
38
40
41
42
43

44

45

0 - mnitial sequence 1
1 - initial sequence 2
2 - mitial sequence 3
3 - iitial sequence 4
4 - initial sequence 5
0 - terminating seq. 1
1 - terminating seq. 2
2 - terminiating seq. 3
3 - terminiating seq. 4
4 - terminating seq. 5
0 to 9999

0 to 9999

0 to 9999

0 to 9999

0 to 9999

1 to 99

0 to 99

0 to 99

0 - 10 cpi

1 - 12 cpi

2 - 15 cpi

0-4lpi

1-441pi

2-4.8 Ipi
3-53Ipi

4 -6 Ipi

5-6.8 Ipi

6 - 8 Ipi

7 - 9.6 Ipi

8- 12 Ipi

0 - initial sequence 1
1 - initial sequence 2
2 - initial sequence 3
3 - initial sequence 4
4 - inital sequence 5

| 69



70 |

Description Length Offset Values
Page terminating seq. # 146 46 0 - terminating seq. 1

1 - terminating seq. 2

2 - terminating seq. 3

3 - terminating seq. 4

4 - terminating seq. 5
Ruler left margin column 1 47 1 to 198
Ruler left margin type 1 48 0 - single space

1 - double space
Ruler right margin column 1 49 2 to 199
Ruler right margin type 1 50 0 - ragged

1 - justified
Tab 1 column 1 51 between L and R margins
Tab 1 type 1 52 0 - normal

1 - wrap

2 - decimal
Tab 2 column 1 53 between L and R margins
Tab 2 type | 54 0 - normal

1 - wrap

2 - decimal
Tab 3 column | 55 between L and R margins
Tab 3 type | 56 0 - normal

1 - wrap

2 - decimal
Tab 4 column | 57 between L and R margins
Tab 4 type | 58 0 - normal

1 - wrap

2 - decimal
Tab 5 column 1 59 between L and R margins
Tab 5 type 1 60 0 - normal

1 - wrap

2 - decimal
Tab 6 column 1 61 between L and R margins
Tab 6 type | 62 0 - normal

1 - wrap
2 - decimal




Description Length Offset Values
Tab 7 column 1 63 between L and R margins
Tab 7 type 1 64 0 - normal
1 - wrap
2 - decimal
Tab 8 column 1 65 between L and R margins
Tab 8 type 1 66 0 - normal
1 - wrap
2 - decimal
Subject 60 70
Written for 30 130
For file type ASCII:
Use original defaults 1 9 0 - yes
I -no
Record length 2 12 1 to 255
File size 4 14 1 to operating system limit

71



72 |

SET LIST FILE OR LIST DOCUMENT -

EXPANDED TABLE

This function sets the name of the list file or list document. The list may be contained in an
ASCII file, a standalone document, or a document owned by MiniWord. This function
must be called before the ToolKit uses the interactive or background list processing func-
tions.

The format of an ASCII list file is similar to the format of a MiniWord list document. Both
the list file and the list document are divided into related groups of data items called records.
From a user’s standpoint the only significant difference between the list document and list
file is the separator between records. Inside a MiniWord list document you must use a
PAGE mark, CTRL-P. Inside an ASCII list file you must use the asterisk character, *, on a
line by itself.

The first record in a list file or document is called the template. This record consists entirely
of variable names. Each variable must be on a line by itself. The order of the variables in
the template is important. The List Processing function correlates the data items from the
other records in the file with the variable names in the template based on relative position
within a record. For example, if the second line of the template contained the variable
LASTNAME, then the second line of all the other records in the ASCII list file should have
a last name in that line. If, for some reason, you are missing information when you create
your list document, be sure to insert a blank line for the missing data item. Otherwise, the
substitution of a data item for a variable during list processing will not be correct.

See Table 29.



Table 29

Description Length Offset Values

Function 1 0 49 - set list file or
document list parameters

Reserved 7 1

Input file type 1 8 32 - document
33 - ASCIL

For mput file type = 33:

Input file name 120 12 ASCII file name

Input file interface 1 9 32 - standalone file
33 - document owned by
MiniWord

For mput file interface = 32:

Input file name 120 12

For mput file interface = 33:

Document name supplied? 1 12 32 - yes
33 -no

For document name supplied = 32:

Document name 24 14

Folder name 60 38

Password 8 98

For document name supplied = 33:

Optional menu title 64 14

|73



74 |

SET DATA VARIABLE = £XPANDED TABLE

This function defines a variable and its value. It is used in conjunction with ToolKit func-
tion 40 (Integrate Data and Text into a document.) You may define up to 32 variables. To
change the value of a variable, set it again with the new value. To erase all variables, set the
variable name to all blanks. See Table 30.

Table 30

Description Length Offset Values

Function 1 0 50 - set data variable
Reserved 7 1

Data variable name 16 8

Data variable value 128 24




SET TEXT VARIABLE = expANDED TABLE

This function defines a variable and the document or glossary that contains the value of the
variable. It is used in conjunction with ToolKit function 40 (Integrate Data and Text into a
document). You may define up to 32 variables. To change the value of a variable, set it
again with the new document or glossary name. To erase all variables, set the variable
name to all blanks. See Table 31.

Table 31

Description Length Offset Values

Function 1 0 51 - set text variable

Reserved 1

Text variable name 16 8

File type 24 32 - document
34 - glossary

File interface 1 25 32 - standalone file
33 - document owned by
MiniWord

For file interface = 32:

File name 120 26

For file interface = 33:

Document name supplied? 1 26 32 - yes
33 -no

For document name supplied = 32:

Document name 24 28

Folder name 60 52

Password 8 112

For document name supplied = 33:

Optional menu title 64 28

75



76 |

SET EDITOR PARAMETERS = EXPANDED TABLE

This function sets the parameters used by the ToolKit editor. This gives the application
calling the ToolKit the ability to selectively disable editing functions, invoke the editor
with up to 16 initial commands, and set the editor maximum right margin. See Table 32.

Table 32
Description Length Offset Values
Function 1 0 52 - set editor parms
Reserved 7 1
Editor functions 8 8 see Note 1
enable bit map
Initial editor commands 16 16 see Note 2
Maximum right margin 1 33 2to 199




Note 1: The editor functions enable bit map as follows:

Byte | Bit Function Byte | Bit Function
0 0 Insert 2 0 Heading
0 1 Delete 2 1 Footing
0 2 Move 2 2 Column Counter
0 3 Copy 2 3 Command
0 4 Center 2 4 Help
0 5 Format 2 5 Bold
0 6 Scratchpad 2 6 Underline
0 7 Paragraph 2 7 Subscript
1 0 Page 3 0 Superscript
1 1 Spell Check 3 1 Overstrike
1 2 Document Insert 3 2 Variable
1 3 Search and Replace 3 3 User Enhancement
1 4 Hyphen 3 4 Tab
1 5 Alternate Character 3 5 Go To Page
1 6 Document Parameters 3 6 Typing Mode
1 7 Page Parameters 3 7 Reserved, set to 1

To enable a function, set its corresponding bit to 1.
Bytes 4, 5, 6, and 7 are reserved and should be set to all 1's.

| 77



78 |

Note 2: Up to 16 initial commands can be given to the editor to perform when it is started.
If all 16 bytes are not needed, set any unused bytes to 0. The values for the commands are

as follows:
Value | Command Value | Command
1 Insert 25 Superscript
2 Delete 26 Overstrike
3 Move 27 Variable
4 Copy 28 User Enhancement
5 Center 29 Advance
6 Format 30 Backup
7 Scratchpad 31 Word
8 Paragraph 32 Line
9 Page 33 Sentence
10 Spell Check 34 Tab
11 Document Insert 35 Screen
12 Search and Replace 36 Up
13 Hyphen 37 Down
14 Alternate Character 38 Backspace
15 Document Parameters 39 Right
16 Page Parameters 40 Home
17 Heading 41 Bottom Home
18 Footing 42 Start Line
19 Column Counter 43 End Line
20 Command 44 Next Screen
21 Help 45 Previous Screen
22 Bold 46 Go to Page
23 Underline 47 Typing Mode
24 Subscript 48 End




EXIT = EXPANDED TABLE

This function terminates the ToolKit. Before continuing with its own processing, the appli-
cation program must close the two communication files and wait for the ToolKit and all the
ToolKit’s child processes to terminate. See Table 35.

Table 35

Description Length Offset Values

Function 1 0 127 - exit

| 79









Minisoft

Minisoft, Inc.

1024 First street
Snohomish, WA 98290
US.A.

1-800-682-0200
360-568-6602
Fax: 360-568-2923

Minisoft Marketing AG
Papiermiihleweg 1
Postfach 107

Ch-6048 Horw
Switzerland

Phone: +41-41-340 23 20
Fax: +41-41-340 38 66
www.Minisoft.ch

Internet access:
sales@Minisoft.com
support@Minisoft.com
http//www.Minisoft.com

ftp://ftp.Minisoft.com



